Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37732224

RESUMO

Tissue resident myeloid cells (TRM) in adults have highly variable lifespans and may be derived from early embryonic yolk sac, fetal liver or bone marrow. Some of these TRM are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplant can replace long-lived brain TRM resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug-conjugate (ADC) targeted cell killing as a cell selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM in multiple tissues. Replacement of TRM ranged from 40 to 95 percent efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM in tissues returned to pre-treatment levels suggesting a regulated control of TRM abundance. As expected, brain, microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that anti-CD45-ADC clears both HSC and TRM niches enabling cell replacement to achieve disease modification in a resident myeloid cell driven disease.

2.
Blood Adv ; 7(22): 6964-6973, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37748049

RESUMO

Tissue-resident myeloid (TRM) cells in adults have highly variable lifespans, and may be derived from early embryonic yolk sac, fetal liver, or bone marrow. Some of these TRM cells are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplantation can replace long-lived brain TRM cells, resulting in clinical improvements in metabolic storage diseases. With the advent of antibody-drug conjugate (ADC)-targeted cell killing as a cell-selective means of transplant conditioning, we assessed the impact of anti-CD45-ADC on TRM cells in multiple tissues. Replacement of TRM cells ranged from 40% to 95% efficiencies in liver, lung, and skin tissues, after a single anti-CD45-ADC dose and bone marrow hematopoietic cell transfer. Of note, the population size of TRM cells in tissues returned to pretreatment levels, suggesting a regulated control of TRM cell abundance. As expected, brain microglia were not affected, but brain monocytes and macrophages were 50% replaced. Anti-CD45-ADC and adoptive cell transfer were then tested in the chronic acquired condition, atherosclerosis exacerbated by Tet2 mutant clonal hematopoiesis. Plaque-resident myeloid cells were efficiently replaced with anti-CD45-ADC and wild-type bone marrow cells. Notably, this reduced existent atherosclerotic plaque burden. Overall, these results indicate that the anti-CD45-ADC clears both hematopoietic stem and TRM cells from their niches, enabling cell replacement to achieve disease modification in a resident myeloid cell-driven disease.


Assuntos
Imunoconjugados , Adulto , Humanos , Imunoconjugados/farmacologia , Macrófagos , Monócitos , Medula Óssea , Microglia
3.
Blood ; 142(7): 658-674, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37267513

RESUMO

Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.


Assuntos
Granulócitos , Monócitos , Células Progenitoras Mieloides , Epigenoma , Epigênese Genética , Diferenciação Celular/genética
4.
Cancer Cell ; 39(11): 1464-1478.e8, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34719426

RESUMO

Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Quimiocina CCL20/genética , Neoplasias da Próstata/patologia , Receptores CCR6/genética , Regulação para Cima , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Células Mieloides/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Receptores CCR6/metabolismo , Análise de Célula Única , Linfócitos T/imunologia , Microambiente Tumoral
5.
Blood ; 136(11): 1303-1316, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32458004

RESUMO

Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and are generated from lipid peroxides underlying the non-caspase-dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition; GPX4 inhibition is a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.


Assuntos
Aldeído Oxirredutases/fisiologia , Carbolinas/farmacologia , Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Hematopoese/fisiologia , Leucemia Mieloide Aguda/enzimologia , Proteínas de Neoplasias/fisiologia , Fenilenodiaminas/farmacologia , Aldeído Oxirredutases/genética , Aldeídos/farmacologia , Animais , Linhagem Celular Tumoral , Citarabina/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Ácido Oleico/farmacologia , Proteínas de Fusão Oncogênica/fisiologia , Oxirredução , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia
6.
Cell Stem Cell ; 25(4): 570-583.e7, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279774

RESUMO

Stromal cell populations that maintain hematopoietic stem and progenitor cells (HSPCs) are generally characterized in steady-state conditions. Here, we report a comprehensive atlas of bone marrow stromal cell subpopulations under homeostatic and stress conditions using mass cytometry (CyTOF)-based single-cell protein analysis. We identified 28 subsets of non-hematopoietic cells during homeostasis, 14 of which expressed hematopoietic regulatory factors. Irradiation-based conditioning for HSPC transplantation led to the loss of most of these populations, including the LeptinR+ and Nestin+ subsets. In contrast, a subset expressing Ecto-5'-nucleotidase (CD73) was retained and a specific CD73+NGFRhigh population expresses high levels of cytokines during homeostasis and stress. Genetic ablation of CD73 compromised HSPC transplantation in an acute setting without long-term changes in bone marrow HSPCs. Thus, this protein-based expression mapping reveals distinct sets of stromal cells in the bone marrow and how they change in clinically relevant stress settings to contribute to early stages of hematopoietic regeneration.


Assuntos
Células da Medula Óssea/metabolismo , Estresse Fisiológico/fisiologia , Células Estromais/metabolismo , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Animais , Atlas como Assunto , Células da Medula Óssea/patologia , Células Cultivadas , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Homeostase , Humanos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Nestina/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptores para Leptina/metabolismo , Nicho de Células-Tronco , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...